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Abstract 0 Engineering control systems analysis and optimization 
techniques are developed, applied, and described with respect to 
their potential for providing rational approaches and quantitive 
criteria for such centrally important pharmaceutical problems as: 
(a )  the evaluation and time-optimal, dynamic control of the ther- 
apeutic performance of drugs, drug products, and interacting drug 
combinations; (b )  the optimal design of the dynamic drug release 
behavior of drug dosage forms; and (c )  patient-individualized 
determination of optimal drug dosage regimens. A functional 
analysis approach is exemplified by the computation of a time- 
optimal drug input, which could be achieved by an appropriate 
mode of drug administration, which elicits optimally controlled 
time variations of drug-induced multiple, simultaneously occurring, 
pharmacological effects. A computer simulation is performed to 
exemplify the manner in which an ideally sought level of therapeutic 
response intensity may be achieved as rapidly as possible without 
exceeding predetermined safe and tolerable levels of adverse drug 
effects. The significance and manner of determination of “single- 
dose” dose-effect relationships are exemplified, and their significance 
with respect to patient-individualized drug dosage regimens is 
discussed. The manner in which time variations of drug effects can 
be interrelated with themselves and plasma drug levels is elucidated. 

Keyphrases 0 Drug input dynamics-relationship of input func- 
tions to time variations of multiple pharmacological effects, com- 
puter simulation 0 Optimal drug input functions-relationship to 
time variations of multiple pharmacological effects, computer 
simulation 0 Computer simulation-time-optimal control of drug 
input 0 Pharmacokinetics--drug input optimization, computer 
simulation 

It can occur that a drug is completely available to the 
systemic circulation yet is entirely ineffective with re- 
spect to the induction of therapeutic effects; this phe- 
nomenon is a consequence of an inadequate access of 
the drug to location(s) in the body, called the biophase, 
that contains the site(s) of action for the drug. These 
considerations emphasize the importance of the concept 
of “biophasic drug availability” (1-9) as contrasted to  
systemic or “physiological drug availability” (10). 
Therefore, a principally important consideration in the 
selection of routes of administration, dosage regimens, 
and drug release characteristics of dosage forms, all of 
which largely determine the time course of drug input 
into the system, is the manner in which the resulting 
drug input uersus time profile influences the biophasic 
drug level uersus time profiles; these, in turn, determine 
the time variation of the intensities of drug responses. 
The profound influence of drug inputs (i.e.,  cumulative 
amounts absorbed uersus time profiles) on drug disposi- 
tion and pharmacological response-time profiles has 
been demonstrated ( 5 ) .  All of a drug’s response char- 
acteristics, including the time of onset of drug action, 
the duration of effect, maximal response intensity, time 
of maximal response, duration of maximal effect, rate 
of dissipation of effect, and dose-response efficiency 
(defined as the area under a response-time curve nor- 

malized to unit dose), are affected by the manner in 
which the drug becomes bioavailable. 

Drugs seldom produce singularly sought specific 
therapeutic effects but, instead, generate simultaneously 
occurring multiple pharmacological responses. Al- 
though a drug input may closely induce an ideally 
sought time variation of a therapeutic response, it may 
concomitantly induce magnitudes of adverse drug re- 
sponses which are intolerable. Taking into account this 
consideration, an optimal drug input may be defined as: 
“a time variation of cumulatively administered drug 
that produces a response uersus time profile which ap- 
proaches a preselected ideally sought therapeutic re- 
sponse-time profile as closely as possible without ex- 
ceeding predetermined, safely allowable limits of any 
concomitantly occurring adverse drug reactions.” This 
type of pharmacological response behavior may be de- 
fined as maximally therapeutically efficient. Drug stan- 
dards in the form of ideal response uersus time profiles 
and the limits of safe toleration of adverse effects may, 
of course, best be prescribed for any particular drug by 
a pharmacokineticist, pharmacologist, toxicologist, and 
clinician team having a background of knowledge and 
experience with the particular drug of interest. 

The present report describes a typical time-optimal 
control of drug input problem, which was studied 
through simulation using the CDC 6500 digital com- 
puter. The problem may be stated as follows: “Deter- 
mine the cumulative drug input dynamics required to 
obtain an SOz of maximal therapeutic response, desig- 
nated A ,  in a minimal time without exceeding toxic 
response intensities of 50, 40, and 2 0 z  for responses 
B, C, and D, respectively.” There were not sufficient 
multiple pharmacological response data available for 
any single drug to  illustrate this drug input optimization 
for maximal therapeutic efficiency problem for an actual 
drug. However, the procedure was exemplified by syn- 
thesizing a hypothetical drug system using four different 
experimental pharmacological response results pre- 
viously observed with three different drugs; it was as- 
sumed that the hypothetical drug produced these re- 
sponses simultaneously. One response, A ,  was arbi- 
trarily selected to be the sought therapeutic response to 
be brought up to and maintained at SO% of its maximal 
intensity in as short a time as possible without exceeding 
what was arbitrarily designated as three other toxic 
responses at levels of 50, 40, and 2 0 z .  The system, as 
well as the therapeutic and toxic levels of response in- 
tensity, was chosen almost entirely at random so as not 
to bias the successful or unsuccessful application of the 
approach. The parameters describing the dynamics and 
drug response behavior of the hypothetical system are 
based on values obtained experimentally in this labora- 

Vol. 61, No. 12, December 1972 0 1941 



tory; therefore, such dynamic and drug response be- 
havior could well be obtained in actual practice with a 
real drug system. 

THEORETICAL 

The principal objective of pharmacokinetic research concerns 
the development of mathematical model descriptions of the dy- 
namics of drug transference and drug effects in pharmacologically 
responding systems. For such developments to be of maximal prag- 
matic value to the development of drug products of optimal quality 
and the computation of drug dosage regimens, the elucidation of 
the pharmacokinetic systems behavior must allow the prediction 
of the time course of drug-induced biological response(s) as a 
function of the manner in which the drug is made available to the 
biological system. 

There are basically two approaches to effecting a measure of 
control over the biological response behavior of a drug. One con- 
ceivable approach may be to attempt to control the disposition of 
the drug in the body or to modulate the physiological activity of 
the drug after it is introduced into the system (1 I ) .  However, ex- 
cept in certain instances where the metabolism, excretion, or ac- 
tivity of the drug can be affected by administering other agents, 
the disposition of the drug once it has entered the systemic circula- 
tion or other body locations is determined by the innate dynamic 
properties of the biological system and cannot readily be altered in 
a necessarily routine, predictable fashion. The alternative approach 
presents the only generally practical means of controlling drug re- 
sponse behavior. The manner in which a drug enters the system can 
obviously always be controlled by the siLe of the dose, the dosage 
regimen, the route and manner in which the drug is administered, 
and the drug release characteristics of the dosage form. 

The problem of obtaining drug response behavior that is maxi- 
mally therapeutically efficient generally transforms into the phar- 

macokinetic problem of computing optimal drug input cersus time 
profiles. An optimal systemic drug input profile can almost always 
be closely approximated by a programmed intravenous injection 
of the drug. For other routes of administration, the therapeutic 
efficiency depends upon how closely the in oico drug availability 
properties of the dosage form reproduce the time course of optimal 
drug input. 

Application of Engineering Control Theory and Optimization 
Methods-Engineering dynamic systems analysis techniques can 
be directly applied to describe the pharmacokinetic processes that 
determine the quantitative nature of drug effects. In this context, 
drug f o w  and drug response signals can be considered in a manner 
analogous to the transfer of electric current, fluids, or forces in 
electrical, hydrodynamic, or mechanical systems. This simple 
realization allows the powerful techniques of engineering control 
theory, signal processing, and optimization to be directly applied 
to the treatment of pharmaceutical problems. 

Pharmacologically responding living systems receiving an input 
of a drug may be described as analogous to an open loop control 
system producing multiple responses to the drug input signal. These 
processes are illustrated by the block diagram in Scheme I, which 
depicts the consecutive processes of drug input and transference 
to  the sites of action in the biophase. Here the biophasic drug levels 
are transduced into either therapeutic or toxic pharmacological 
responses. Three types of commonly occurring drug response pro- 
files are shown. The upper response cersus time profile is charac- 
terized by a relatively rapid appearance of a peak; it typifies the 
case where the biophase and plasma compartment are kinetically 
identical. For example, i f  the response is an antibiotic-induced anti- 
bacterial activity of the plasma, it may be expected to be described 
by the top curve. However, i f  the activity of the antibiotic is in- 
tended to be directed against a deep-seated tissue infection, then 
the antibacterial response rcrsiu time profile may appear as given 
by the middle curve. The lower curve is typical of an indirect effect 
as elicited by, for example, reserpine on blood pressure or warfarin 
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Scheme I--Block diagram clraracterizarioti of ihe dynamics y /  dnrg response 
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Scheme II-Drug input-drug level response relationships for a rapidly injected, u(t) (impulse function), drug input to the drug transfer system, 
i.e., the body. The drug level versus time profile represents the impulse response [weigh ring function, G(t), in the time domain or transfer function, 
g(s), in the frequency domain o f  the system]. Subsequently, the cumulative amounts of drug input to the system at any time, A(t). following dosing 
by other modes o f  administration are computed as the convolution of the reciprocal of the integral o f  G(t) and their corresponding observed drug 

level response, Q(t): i.e., A(t) = [hf G(t)]-l*Q(t). 

on prothrombin complex activity where the response may be pro- 
longed even beyond the time the dose of drug has been effectively 
cleared from the plasma. In any event, the response is a causal con- 
sequence of the time variation of biophasic drug levels; although the 
relationship may not always be immediately apparent, the response 
intensity, I ,  can generally be functionally related to the biophasic 
drug level(s). Q ( f ) ,  responsible for its induction. 

Transductive Interrelation between Z(t) and Q( t)-Work in this 
laboratory (1-9) has shown that the functional relationship between 
the pharmacological response intensity. I(r), and corresponding 
biophasic drug levels, Q(t) ,  are provided by dose-effect curves or, 
more completely, by dose-effect-time surfaces. The verity of the 
relationship in any instance can be rigorously determined from the 
observed pharmacological data alone (1-4, 7); the method obviates 
any determination of tissue or  corporeal fluid drug levels by chem- 
ical or radiological assay and, therefore, can be readily applied 
where methods for the detection of the drug by direct assay are 
difficult or nonexistent. A rigorous mathematical basis for the 
utilization of dose-effect curves to relate biophasic drug levels 
reciprocally to their corresponding pharmacological response 
intensities was reported earlier (7). 

Linear Systems Analysis of Drug Disposition-Except for the 
transduction between biophasic drug levels and drug response, the 
majority of drug transference systems are well described by com- 
partment models (12) and, therefore, behave linearly or a t  least are 
piecewise linear over an operational range of interest. The objective 
of the present linear systems analysis is to compute drug input 
functions that are optimal in producing pharmacological responses 
of maximal therapeutic efficiency. In engineering terms, this re- 
duces to an input discovery or optimization problem. Scheme I1 
shows the manner by which the drug transference dynamics of the 
system can be characterized by determining the relationship be- 
tween drug input and output in terms of biophasic drug levels for a 
rapidly injected unit dose of drug. Such an injection constitutes a 
unit impulse function drug input. If the time course of pharma- 
cological response is observed following a rapidly injected dose, its 
transformation into the time course of biophasic drug levels di- 
rectly provides the unit impulse response or transfer function for 
the system. The integral of the unit impulse response then gives 
the unit step function response required to compute drug inputs 
corresponding to any desired drug output response profile (13, 14). 

Functional Analysis Approach to Pharmacokinetic Problems-A 
new and powerful functional analysis approach, previously de- 
scribed (15-18) and further developed by the authors, has been 
implemented to achieve the time-optimal control of drug response 
behavior described in the present report. Functional analysis is a 
branch of mathematics which generalizes the concepts of classical 
analysis (including calculus), algebra, and geometry from variables 
that are real and complex numbers to  more general kinds of 
variables. Relationships that deal with point functions, i.e., y = . f (x) ,  
are replaced by more general types of functions, called functionals 
or operators. wherein the function depends upon another function 
rather than on point values. Functional analysis provides a unified 
framework for considering problems in which variables are not just 
numbers but are time functions. It is particularly well suited for 
open loop, programmed control of dynamic systems through ap- 
plication of appropriately optimal, input time functions. As such, 
functional analysis is ideal for application to pharmacokinetic 

problems such as those presently described which relate to the 
time-optimal control of drug response dynamics. 

Although ideally suited for pharmacokinetic purposes, the 
presently described functional analysis approach has not previously 
been suggested for application to pharmacokinetic problems. This 
particular approach to the time-optimal control of multiple phar- 
macological response dynamics possesses several important ad- 
vantages relative to other less general mathematical techniques 
which have been more commonly applied to control engineering 
optimization problems (19-26). In addition to relative computa- 
tional and theoretical simplicity, the approach possesses the fol- 
lowing advantages: 

1. The capability to accommodate multiple inputs. This feature 
is important in that it will permit the quantitative treatment of 
multiple pharmacological response or drug level cersus time data 
resulting from the simultaneous administration of the same or dif- 
ferent drugs by different or the same routes and modes of admin- 
istration. The significance of this capability to the simulation and 
prediction of the pharmacological and/or drug level response be- 
havior elicited from acute and chronic administration of a single 
drug or interacting drug combinations is apparent. 

2. The capability to treat system behavior using transfer func- 
tions of up to seventh or higher order (i.e.,  models possessing seven 
or more compartments for each pharmacological or drug level 
response can be readily constructed). This capability is certainly 
more than sufficient for the treatmmt of the dynamic systems be- 
havior normally encountered with pharmacokinetic problems. 

3. The capability to treat adaptive system noiilinearities that can 
mechanistically arise in drug responding living systenls from the 
occurrence of threshold and saturation phenomena affecting drug 
plasma and tissue binding, drug transport and metabolic processes, 
and dose-effect relationships. Drug-interaction-induced time varia- 
tions in dynamic model parameters resulting from the coadministra- 
tion of drugs in combination can also be effectively managed. 

EXPERIMENTAL 

Determination of Dose-Effect Curves-Figure 1 depicts intra- 
venous dose-effect curves for each pharmacological response 
included in the present simulation of a hypothetical system. These 
curves provide the relationships necessary to transduce relative 
biophasic drug levels into their corresponding pharmacological 
response intensities, or vice versa. The A curve in actuality describes 
the mydriatic response of tropicamide (6), the B curve is the miotic 
response curve for carbachol, the C curve is the intraocular pressure 
response for carbachol, and the D curve represents the mydriatic 
response for tridihexethyl chloride (1). The A and D dose-effect 
curves are based on previously reported results (1, 2), where the 
details of the measurement of the mydriatic response intensity 
were provided. The miotic response to carbachol was measured 
similarly. The relative intraocular pressure changes induced by 
carbachol were determined using a applanatioii tonometer'. 
Rabbits were the test animals in every case. The dose-effect curves 
shown in Fig. 1 are plots of the maximum response intensity ob- 

1 Tonomat, Ocular Instruments Inc., Cle Elum, Wash. 
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Figure 1-Intracenous dose-Effect curves for  rabbits. Key: A, my- 
driatic response of tropicamide; B,  miotic response to carbachol; C ,  
intraocular pressure response to carbachol; and D ,  mydriatic re- 
sponse to tridihexethyl chloride. The curves define the functional rela- 
tionship between the intensity of drug effect and relative biophasic 
drug levels. 

served following rapid intravenous dosing with the drugs. A min- 
imum of six different doses administered to at least three rabbits 
was employed for each response. The dose-effect curves represent 
curvilinear least-squares regression fits to the averages (9). The 
details of the studies with carbachol will be presented in subsequent 
reports . 

The tropicamide plasma levels used to construct the “single- 
dose” dose-effect curve in Fig. 2 were obtained by periodically 
sampling blood taken from the marginal ear vein of the rabbits 
used as test animals. The levels of tritiated tropicamidel were de- 
termined using standard techniques of liquid scintillation counting3 
(9). The method of intravenous infusion was described previously 
(2). 

Transfer Function Parameters-The values of transfer function 
parameters were obtained from the results of weighted, least- 
squares, multiexponential, computerized fits to the mean time 
variations of dose-normalized relative biophasic drug levels ; 
these results were obtained by computerized transduction of ob- 
served time variations of drug response intensities following im- 
pulse drug inputs, i.e., rapid intravenous bolus dosing. The curves 
presented in Fig. 1 were employed for transduction. Multifit, 
a previously developed (1, 9) digital computer program which em- 
ploys an iterative systematized search method, was used to ac- 
complish the weighted least-squares fitting required to obtain the 
transfer function parameters. This and the programs used to 
compute the time-optimal control (24, 25) were implemented on a 
computer4. 

DOSE AND BlOPHASlC DRUG LEVEL, f(i) 

RESULTS 

Mathematical Approach to Time-Optimal Control of Multiple 
Pharmacological Response Behavior-The utility of the proposed 
pharmacokinetic control systems analysis resides in its ultimate ap- 
plication to simulating drug response behavior and the computa- 
tion of drug input functions which are optimally consistent with 
maximizing sought therapeutic responses to drugs and drug com- 
binations while maintaining the intensities of toxic drug effects 
constrained within predetermined safe, allowable limits. In this 
manner, a new rational approach to designing the formulation and 
evaluation of drug products and determining their optimal mode of 

*Supplied by AIcon Laboratories, Fort Worth, Tex., and New 

3Performed with a Packard Instrument Co. (La Grange, Ill.) Tri- 
England Nuclear, Boston, Mass. 

Carb model 314X counter. 
4 CDC 6500, 

administration may be attainable. An example is presented below 
for a hypothetical system, 

One type of feasible objective for an optimal drug input is to 
achieve a desired biophasic drug level and corresponding response 
intensity in the minimum time subject to the condition that pro- 
scribed “toxiphasic” drug levels and response intensities are not 
exceeded. The following hypothetical system is considered where a 
drug produces a therapeutic effect, A, in the biophase while pre- 
selected levels of toxic effects resulting from “toxiphasic” drug 
levels at the sites of action, B, C,  and D, are not exceeded. 

The dynamic optimization technique employed in this work re- 
quires the dynamic equations for the systems A ,  B, C,  and D and 
bounds on the input functions for these systems. The dynamic 
equations were first obtained in terms of transfer functions by the 
least-squares, multiexponential, computerized fits described pre- 
viously. Bounds on the input functions are then determined by 
using the dose-effect curves relating response intensities, relative 
biophasic and toxiphasic drug levels, and the final value theorem 
of Laplace transforms. The optimization technique employed here, 
i.e., the necessary conditions and input functions as derived by the 
use of some theorems of functional analysis, requires the dynamic 
system equations to be represented in state variable notation. This 
is accomplished by the technique of direct programming. A trans- 
formation is then performed that casts the system equations into 
a form with symmetrically constrained inputs. The form of the 
optimal input function and the subsidiary problem which deter- 
mines the number and time of the input switchings are derived in 
the Appendix. The solution to the subsidiary problem is accom- 
plished by an iterative numerical technique (24,25). 

The transfer functions relating relative drug levels and cumulative 
drugs inputs are given by Eqs. 1, 2, 3,  and 4 for sites of action A, B, 
C, and D, respectively. The transfer function parameters are eval- 
uated from the results of multiexponential fits to the biophasic 
drug level response to impulse (bolus injection) or step (zero-order 
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Figure 2-Comparison of tnitltiple bolus intravenous dose-effect curce 
(0)  witli a single-dose dose-effecr r ime (0) obtained by simultaneously 
monitoring the time course of tritiated tropicarnide plasma Iecrls cind 
the mydriatic response intensity d u r i q  and ,following the slow in- 
travenous infusion of’  the drug to rabbits. The curve is a weighred 
least-squares Jit to the “multiple-dose” uoeruge vulues obtained from 
replications performed with .four rabbits. 
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intravenous infusion) function drug inputs: 

(Eq. 3) 

(Eq. 4) 

When considering the time-optimal drug input problem, it is 
convenient to work with the instantaneous drug input, u(t). Since 
the cumulative drug input is simply the time integral of rr(t), the 
transfer function relating the outputs ~ A ( s ) ,  f ~ ( s ) ,  fc(s), and f&) 
and u(s) are given by Eqs. 1-4 with A(s)  replaced by u(s)/s. For the 
particular hypothetical system under consideration the transfer 
function parameters were determined as 71.4 = 1.004, Y Z A  = 
0.28968, ~ I A  = 1.0, f f ~ ~  = 0.5452, and a 3 ~  = 0.040748; Y I B  = 2.2, 
YZB =: 0.674, CVIB = 1.0, CYZB = 1.40718, C Y ~ B  = 0.63710, and L Y I B  = 
0.0937; TIC = 0.224, ale = 1.0, (YZC = 0.3538, and a3c = 0.022388; 
and 710 = 0.31842, YZD = 0.0049169, ( Y ~ D  = 1.0, CYZD = 0.28734, 
C X ~ D  = 0.00761 31 I ,  and L Y ~ D  = 0.0000525598. 

Considering a specific example, it may be desired to  reach 80% of 
the maximal therapeutic effect at  site A while not exceeding the 50, 
40, and 20% maximally obtainable toxic response levels for re- 
sponses B, C, and D, respectively. The therapeutic intensity and 
toxic intensities are related to the relative biophasic and toxiphasic 
drug levels by the dose-effect curves shown in Fig. 1. For example, 
the 80% level at  site A corresponds to . f ~ ( z )  = 0.330, where ~ A ( Z )  
is the relative biophasic drug level. Once values for the relative 
biophasic drug levels are obtained, the corresponding values of 
instantaneous drug input required to maintain these levels are ob- 
tained by use of the final value theorem of Laplace transforms, 
Le.: 

~ A ( Z A ) , ,  = lim . f A ( f A ) ( d  = lim S ~ A ( ~ A ) ( S )  = 

.fc(Tc)(s) = Y l C  

A(s) L Y I C ~  + CYZC f ( a d s )  

710s + YZD 

f f l D S z  + (YZDs + (Y3D f (CY4D/S) 
f4>?(s> = __ 

A(s) 

1- m s+o 

steady-state value of f A ( z A ) ( f )  (Eq. 5 )  

For a constant value of instantaneous input, i.e., u(r) = M ,  one 
obtains from Eq. 1, with A(s)  replaced by u(s)/s: 

or : 

For the 80% level at  site A ,  one obtains: 

Applying the final value theorem for each site of action, the results 
found in Table I are obtained. 

Here one notes that the limiting toxiphasic drug level in Com- 
partment D requires a sustained drug input, which is 1.86 times 
that required to maintain the desired therapeutic effect in Com- 
partment A .  It, therefore, is seen that one can drive the drug level 
in Compartment A to its final value much faster if the instantaneous 
drug input is put up to the value of 0.08632, then switched to zero 
at the appropriate time, held at  zero untilfA(Z) = 0.330, and then 
switched to the value needed to maintain the desired effect, in this 
case 0.046421. This, in essence, is the procedure followed for time- 
optimal control when the instantaneous inputs are constrained in 
amplitude. The problem then resolves into finding the switching 
time that yields the minimum time to reach the desired final state. 
I n  general, this requires calculation of up to (/I - I )  switching times 
for an nth-order system. 

Table I-Results Used in the Computation of the 
Time-Optimal Drug Input 

Percent of 
Drug Effect Zmsx or T,,, f ( I )  orf(T)o Mb 

A 80 0.33 0.046421 
B 50 42.0 4.91 
C 40 22.0 2.20 
D 20 8 . 0  0.08632 

a T denotes toxic intensity, andf(T) refers to drug levels in biophasic 
compartments B, C, and D containing sites of action for toxic effects, 
i.e., "toxiphasic" drug levels. * M refers to instantaneous step input 
values, corresponding to the sought level of I and maximally allowable 
levels of T obtained from application of the final value theorem. 

For the particular example considered here, examination of the 
constants for the transfer functions for sites A and D reveals that D 
is much slower. Therefore, one can first set the instantaneous rate 
to a value of 0.10 and be assured that the level at  site D will not ap- 
proach the 20% limit while the level at  A is increased to 80 %. 

Various techniques can be used to solve the minimum time 
problem with amplitude constraints, e.g., the minimum principle 
of Pontryagin (19) and the calculus of variations (26). In the present 
case, a method developed via the use of certain theorems of func- 
tional analysis (15-18) will be used. In any case, all of the above- 
mentioned techniques require the system to  be represented in state 
space notation. The transformation of the dynamics, as expressed 
by transfer functions, to the state domain can be achieved in various 
ways. The method used here is known as direct programming. For 
example, consider the transfer function given by Eq. 1 with A($) = 
u(s)/s: 

Proceeding with the method, one divides both the numerator and 
the denominator by LYlAS2 to obtain: 

Now define the variable E(s)  as: 

4 s )  E(s) = 1 + (aZA/a lA)s - '  + ( a 3 A / a l A h - '  

By rearranging Eq. 9b, Eq. 9c is readily obtained: 

Also, Eqs. 9a and 9b yield: 

Equations 9c and 9dare diagramed in Scheme 111. 

14 (s 

I:@ 
Scheme IIZ-Diagram of Eqs. 9c arid 9d 
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Now define the output of one integrator as x2 and the output of 
the other as x l .  From Scheme 111, write: 

(Eq. lOa) 

i, = x1 (Eq. 106) 

il = -5% x1 - ff34 x 2  + u(t) 
(YIA f f I A  

or in vector-matrix notation: 

(Eq. 1Oc) 

d = AX + bu (Eq. l l a )  

x(0) = xo = 0 (Eq. 116) 

h(t) = dTx (Eq. l l c )  

(Eq. l l d )  ~ A ( T / )  = 0 . 3 3  = desired Value Of f A  = fa ,  

0 5 u 5 MD = 0.10 (Eq. l l e )  

where: 

= 

dT ~ 72 7 3  
{ f f l A  % A !  

The minimum time problem can now be stated as follows: Given 
a system described by Eqs. l l a  and l l c  with some initial state 
x(0) = xo and desired state x( t )  = xd, with the input constrained 
by 0 5 u(t) 5 MD, find theinput function u(t) so that the desired 
state is reached in the minimum time Tjo. 

The particular technique used here, i .e.,  the functional analysis 
approach, requires the input to be constrained symmetrically, 
i.e., - B  I u(r) 5 B,  or lu(t)( 5 B. Therefore, before one can pro- 
ceed, a transformation of variables must be made to achieve this 
type of constraint. In the present case. simply define U' = it - 
( M D / ~ ) .  Then Eq. 1 l e  leads to: 

-- MD < u' I MO - (Eq. 120) 2 -  2 

If one also lets z1 = x1 and: 

one obtains, after substituting into Eqs. lla-lle: 

aZA f f 3 A  

ffIA ffIA 
21 = - -z1 - - 2 2  + u' 

(Eq. 126) 

or : 

i = Az + bu' (Eq. 13a) 

MD 
IU'I 5 - 2 

z T ( 0 )  = j o  - - - 
2 ff3A 

(Eq. 13c) 

where the quantities A ,  b, and dT are defined as before. The final 

desired relative drug level, in terms of z1 and z2.  is given by: 

7 2 A  MD YlA 

%A ff lA ff8A 2 f a ,  = --S(Tf) f y2AZ~(T/) f - - = 0 . 3 3  (Eq. 13e) 

or : 

Therefore, a ( T j )  and zZ(Tj) are constrained by Eq. 13e. One can 
write: 

Therefore : 

ZdTlT/) = ~ z l d ( F ) ~ z d ( m  1 (Eq. 13h) 

where zpd(Tf) is given by Eq. 13g. 
One sees that there is an infinite number of combinations of zl- 

(TI )  and ZQI) that will satisfy Eq. 13e. This means that the final 
desired value o f . f A ( l A )  is achieved by any member of the target set 
formed by Eq. 13e. In general (20) .  there is one combination of 
zl(T/) and z:(T/)  of the target set that yields the smallest valueof T j  
corresponding to the initial conditions given by Eq. 13d. The solu- 
tion to the minimum time problem can then be found by repeated 
calculation using a simple search technique, Le., a value for zl(T,) 
is chosen, the value of zz(T/)  is then given by Eq. 13g, and the T f  
for this pair is found. The procedure is repeated until the 21 yielding 
the smallest value of T f  is found. 

The problem can then be stated as follows: Given the system 
described by Eqs. 130 and 136 with the initial condition given by 
Eq. 13d and input constrained by Eq. 13c, drive the system to the 
desired final state, Eq. 13h, where z1 and z2 are constrained by Eq. 
13e, in the minimum time possible. 

As stated previously, the solution can be obtained by the applica- 
tion of various theorems of functional analysis. The details of the 
derivation were given by Kranc and Sarachik (16), Sarachik and 
Kranc (17). and Kreindler (18). The particular results obtained by 
this technique are used here because they can be easily applied to 
systems with multiple inputs, although an example with only a 
single input is considered here. Systems with multiple inputs will 
be considered in subsequent reports. A version of the derivation of 
the solution using the approach of Kreindler (18) is presented in  the 
Appendix. The time-optimal control function for the specific ex- 
ample considered here, the case of a second-order system with a 
scalar input and output, is given by Eq. A35 of the Appendix. It is: 

where sgn is the signum function defined in the Appetidix. 
Therefore, one sees that Eq. 14 defines an input function that 

switches from ( M D / ~ )  to - (MD/2)  as the argument of sgn changes 
from positive to negative. Included in the argument of sgn is the 
parameter A,. It is when hl has been properly specified that there is 
a time-optimal solution; XI can, in turn, be found from Eq. A34 
derived in the Appendx.  It is: 

i.e., X1 is selected such that the minimum value of the integral is 
equal to unity while T j ,  the upper limit of integration. is the min- 
imum time Tfo. All of the terms in the integrand of Eq. 15 except XI 
and T/ are known functions of time or given constants. Therefore, 
once a value for T/ is chosen, the value of the integral depends only 
upon the value of XI. By searching over values of A,, the minimum 
value of the right-hand side of Eq. 15 is found. If the value of the 
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integral is not equal to unity, a new value for TJ is chosen and the 
minimization with respect to XI is repeated. This process is continued 
until a pair, TJ and X I ,  that satisfies Eq. 15 is found. One then has 
the minimum time, Tfo, and the value of XI that produce the correct 
switch in the control function, Eq. 14. A program was developed 
for this purpose (24, 25). The quantitieszqTt), I, +11, and are 
defined in the Appendix, by Eq. 9a, by Footnote 8, and by Eq. 
A314 respectively. 

The particular example presented here demonstrates the in- 
teresting case of a plant with numerator dynamics as seen by Eq. 8. 
Systems with numerator dynamics lead to the situation where the 
desired final output, f ~ ~ ,  given by Eq. 13e, can be reached by any 
pair of state variables, z1 and z2, that satisfies Eq. 13e. As stated 
previously, one then has a target set rather than a target point. 
Therefore, with the initial state fixed by Eq. 13d, many combina- 
tions of z1 and zz will give f a d  = 0.33. For example, one pair of 
values for z1 and zz which satisfies Eq. 13e is z1 = 0 and: 

i.e., zl(T,) is equal to its initial value and z2(T,) is prescribed by 
Eq. 13e. This pair corresponds to the original state variables, Eqs. 
1Oa-lOc, with values of xl(Tj) = 0 and: 

(Eq. 17) (YIA xS(Tf) = f A d  - 
Y 1 A  

However, whenever there exists a target set, in this case a straight 
line, there is an infinite number of z1 and zz pairs that will yield 
f ~ ~ ,  but only one pait will achieve f A d  in the minimum time. The 
minimum is then found by the iterative approach explained after 
Eqs. 13a-13h. In addition, the type of function that produces the 
minimum time response depends on the optimal point on the target 
set. In general, depending on the initial conditions as given by Eq. 
13d and the desired value of the system output f ~ ~ ,  one has three 
types of optimal control functions, satisfying condition 13c, for a 
second-order system. They are pictured in Schemes IV-VI in terms 
of the transformed input u ' O .  

Scheme IV illustrates a case where a single switch at time tl and a 

u 
t i  

Scheme IV-Control at both upper and lower bounds witlz no 
singular region 

switch to u'O = 0 at t = Tf0  yield the optimal time. This corresponds 
to the case where Eq. 13e is satisfied by values of zl(T/) and zz(T,), 
which remain constant after time greater than TJO and yet maintain 
the output at its desired value, f ~ ~ .  In general, this will not be the 
case for a system with numerator dynamics and the usual form of 
the control function is given by either Scheme V or Scheme VI. 
Scheme V indicates a situation where one still has a switch to u ' O  = 
-(kfD/2) at t = tz, but the target set is reached at values of zl(Tjo) 
and zZ(Tf0) which do not maintain the output at f A d  for times greater 
than TIo. Consequently, an exponential type decay for u'O(t) from u'O 

= - ( M D / ~ )  to U ' O  = -0.003579 is required until zI and z2 adjust to 
the values which do maintain the output at its desired constant 
value. Scheme VI indicates a situation where the control is never 
switched to its lower limit to achieve f~~ in the minimum time. One 
notes in Scheme VI that the required exponential decay appears 
as it did in Scheme V but that it does not in general begin from 
U ' O  = - (MD/~).  To picture the optimal drug input in terms of 
i d f o ,  one simply transforms Schemes IV-VI by the addition of ( M 0 / 2 )  

Sclzeme V-Control at both upper and lower bounds with a 
singular region 

t 

Scheme VI-Control only at upper. bound with a 
singular region 

to the values of u ' O  on each plot. Equations 14 and 15 will then 
permit calculation of the form of the control function up to time 
Tf0 .  The form of the exponential decay required for the cases of 
Schemes V and VI are then calculated from the system equations. 
For the particular example considered, it happens that the optimal 
control is given by the form shown in Scheme VI. The decaying 
portion of u'o is known as the region of singular control, and it is 
found from the simultaneous consideration of Eq. 13e and the con- 
dition that f a  remains constant at the desired value for times greater 
than TIo.  This condition requires the derivative of Eq. 12e to be zero, 
i.e. : 

Substituting for il and il in Eq. 18 from Eqs. 12c and 12d, one ob- 
tains: 

Now I = T f o  will be the first time when Eqs. 13e and 18 (and, 
therefore, also Eq. 19) will be simultaneously satisfied. By substi- 
tuting for i2(t) from Eq. 12dinto Eq. 18, one obtains: 

? l A i l ( t )  + YZAZl( t )  = 0 (Eq. 20) 

The solution to Eq. 20 for t 2 Tj0 is: 

z,(t) = zl(TjO) exp [- =(r -- T,O)] (Eq. 21) 
Y l A  

By substituting Eq. 21 into Eq. 12d, one obtains: 

z2 = zI(Tfo) exp [ - E ( t  - T,O)] t 2 Tjo (Eq. 22) 

By integrating Eq. 22 and using the condition of zp(T,O), one ob- 
tains for t >_ T f o :  
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Figure 3- -Time-optimal drug itipur profile. 

Now, substituting Eqs. 21 and 23 into Eq. 19 and rearranging 
yield : 

("-" - - ?&! %)zl(T,o) exp [- EA(t - T,O)] (Eq. 24) 
al.4 71.4 ~ I A  72.4 71 A 

for r 2 TIo .  

12a, and the value of u( m) given in Table I, one sees that as f -. m : 
From Eqs. 1 Ie, 21, 23, and 24, the definition of u' proceeding Eq. 

(Eq. 25a) 

(Es. 25b) 

zl( m )  = 0 

zp(m) = XAzl(~,o) + ZZ(T/O) 
71.4 

and : 

Or, in terms of the state variables and control function given by 
Eq. 10: 

x1(m) = 0 (Eq. 26a) 

(Eq. 266) x*( m )  = zI( m )  + 
uO( m) = 0.046421 (Eq. 26c) 

MD ~ I A  - 
2 aS.4 

The actual results obtained for the systems given by Eqs. 1 4  are 
presented in Figs. 3 and 4. Figure 3 represents the cumulative drug 
input [simply the integral of uo(t)] to achieve an 80% therapeutic 
effect in minimum time for the system given by Eq. 1. The first 
phase of the input is described by a relatively rapid zero-order 
input having a rate of 0.1 mcg./min. given for 5.56 min., the min- 
imum time for this example. The cumulative drug input is then the 
integral of the exponential portion of the instantaneous input, 
uo(t). The exponential portion dissipates after about 12.0 min., and 
the cumulative input then follows a zero-order input of 0.0464 
mcg./min. which maintains the therapeutic response intensity at a 
level of 80x. 

DISCUSSION 

Optimized Drug Input-The cumulative drug input profile de- 
picted in Fig. 3 could in practice be precisely achieved by a pro- 
grammed slow intravenous infusion or be obtained less precisely 
by a properly designed oral dosage form. If the time-optimal input 
was not used and the zero-order drug input rate was simply set to 
the rate required to maintain the 80% steady-state level of the ther- 
apeutic, A ,  response, it would have required 50 min. to achieve a 
level within 1 of the desired 80% of maximal response intensity. 
The time-optimal input achieved the 80% level in 5.56 min. The 
time-optimal drug input, therefore, allowed the desired level of 
therapeutic effect to be achieved nine times faster than could be 

attained by simple intravenous infusion of the drug at  a constant 
rate. Computational schemes for optimizing first-order drug in- 
puts which are more common and can more readily be achieved in 
practice by administration routes other than intravenous are pres- 
ently being further developed. 

Time-Optimal Drug Response Dynamics--Figure 4 presents the 
time-optimal therapeutic response intensity, A,  and the corre- 
sponding toxic response intensities produced at  sites B,  C, and D 
as a function of time. One notes from Fig. 4 that the minimum 
toxic intensities are well within the prescribed limits of 50, 40, and 
20% for E,  C ,  and D, respectively, while the desired therapeutic 
effect of 80% at A is achieved in 5.56 min. The time coordinate for 
response D in Fig. 4 was  contracted by a factor I/,, i.e.. 10 min. is 
actually 40 min. It can be seen that the toxic D response results from 
the presence of the drug in an apparent kinetic compartment into 
which it enters and is eliminated slowly. After chronic administra- 
tion of the drug at  uncontrolled drug inputs, the level of the drug 
can be expected to build up to induce a serious toxic effect which 
would have a prolonged duration. On the other hand, if D was a 
sought therapeutic effect, it can be seen that a rapidly absorbed 
single dose of drug would be relatively very ineffective in producing 
a response. It can, therefore, occur that potentially useful drugs are 
discarded whereas appropriate adjustment to their dosing require- 
ments would have allowed them to exhibit their activity. Such con- 
siderations again emphasize the importance of controlling drug in- 
puts and thinking in terms of biophasic drug availability rather 
than systemic bioavailability. 

For any drug the actual selection of an allowable intensity for 
any particular toxic drug effect would obviously depend upon the 
severity of its morbific character. A drug that does not elicit ac- 
ceptable levels of toxic effects is generally not a useful drug. How- 
ever, in some instances, depending upon the drug's transference 
dynamics, it is still quite conceivable that the toxic response be- 
havior could be substantially minimized by appropriately pro- 
gramming the drug input. 

Interrelationship of Plasma Drug Levels and Multiple Phar- 
macological Effects-The recording of multiple drug effects simul- 
taneously with plasma drug levels permits the establishment of 
single-dose dose-effect curves for each response. The interrelation- 
ships which exist between drug responses and drug levels, e.g., as 
determined directly by chemical or radiological assay techniques, 
become apparent when it is considered that in addition to the 
occurrence of sometimes complex feedback control mechanisms, 
which can function to cause interactions between drug-induced 
changes in physiological processes, each drug effect may be related 
to any other by virtue of the consideration that i t  occurs as a con- 
sequence of the distribution of the drug(s) in a system of inter- 
connecting compartments. For a linear system, the relationship 
between any two drug effects can be established; an effect can be 
subsequently predicted from the results of recording another by 
computing the transfer functions that describe the kinetics of the 
drug($ passage between biophasic compartments. Such transfer 
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functions can be computed from the results of recording the simul- 
taneous drug effects that occur in response to any drug input. The 
time course of drug response A ,  i.e., I&), can be transformed into 
a time course of response B,  I&), by the process shown in Scheme 
VII. The authors implemented the above approach6 to the deter- 

transduc tion r ia  

dose-effect curve for A 

I t ransfer  1 function 

level of B 
transduction tiin 

dose-effect curve for B 

Scheme Vll  

mination of the time course of the intraocular pressure response, 
following ophthalmic dosing of carbachol, from the results of 
monitoring the time course of the drug’s miotic activity. In this 
case the approach had the advantage of providing the intraocular 
pressure results of interest without disturbing the kinetics of the 
transcorneal transport processes by which the drug penetrates to its 
sites of action within the eye; the direct tonometric recording of in- 
traocular pressure requires contact with the eye, while the miotic re- 
sponse can be monitored, e.g., using a vernier calipers, without touch- 
ing the cornea through which the drug is being absorbed. 

“Single-Dose” Dose-Effect Curves and Patient-Individualized 
Dosage Regimen Optimization-It is well known that following the 
administration of a “standard dose” of a drug to different patients, 
the peak blood levels, for example, may vary as much as 40-fold 
between patients; pharmacological responses can range from in- 
efficacy to acute toxicity. A n  individual patient may vacillate in 
such extremes for appreciable periods of time prior to the establish- 
ment of an optimal dosage schedule by trial and error. If the drug 
transference dynamics and appropriate transduction functions (as 
defined by dose-effect relationships) were known for a patient, an 
optimal dosing regimen could be computed and initiated with the 
first introduction of the drug into the patient’s system. However, 
such information may be expected to be quite rarely available and, 
due to pathologies that can profoundly influence the dynamics of 
a drug’s absorption, distribution, and elimination, it would become 
rapidly obsolete. However, it is quite conceivable that for appro- 
priate drugs such information may be approximated from moni- 
toring the results of administering an initial standard dose (or a 
dose which the physician would normally prescribe) and utilizing 
the data to compute a subsequent dose and dosing regimen optimal 
for the particular patient. In this manner the time required to 
achieve an optimal therapeutic response behavior is minimized. 
An apparent difficulty in this approach is the multiple dose-re- 
sponse data required to construct the dose-effect curves necessary 
to transduce observed time variations of pharmacological response 
intensities into their corresponding biophasic drug levels, which 
are subsequently utilized to obtain the necessary transfer functions; 
these relate drug inputs to biophasic drug level uersus time profiles. 
In effect, what is required to circumvent the impracticality of de- 
termining multiple-dose dose-effect curves is the ability to con- 
struct a dose-effect curve from the results of a single dose. An in- 
dication that this may be a feasible objective is suggested by the 
preliminary result represented by the two dose-effect curves for 
the mydriatic response of tropicamide shown id Fig. 2. 

SUMMARY AND CONCLUSIONS 

The presently described approaches represent the first known 
attempt to relate quantitatively the factors which determine drug 
input functions ( i .e . ,  mode of administration and drug release 
properties of dosage forms) to the corresponding time variations of 
multiple pharmacological effects which they determine. The de- 
velopment of the computational capability to optimize drug in- 
puts is salutary to three centrally important problem areas of phar- 

To be published. 

maceutical science. These include: (a )  the rational design of the 
drug release properties of new drug dosage forms, (b) the evalua- 
tion of the therapeutic performance of existing drug products, 
and (c)  computation of time-optimal, patient-individualized, and 
automated drug dosage regimens. 
In order for a product developer to apply his skill to developing 

an optimal drug product, he must have criteria on which to judge 
the success of his efforts at any stage of the development. When 
applicable, the concepts of optimal drug inputs and therapeutic 
efficiency of the product provide the most rational criteria. The 
computation of optimized drug inputs also provides a rational 
basis for the selection of drug products already available-as well 
as the routes and time schedule for their administration-which 
will allow an optimal therapeutic efficiency to be attained as closely 
as practicable. 

The theoretical basis for the computation of optimal drug inputs 
planned to be further developed and expanded is also fundamental 
and salutary to the eventual development of controllers and servo- 
mechanisms for the automated administration of potent drugs 
(such as anesthetics, cardiac stimulants, and depressants) to patients 
in response to feedback signals which originate from continuously 
monitoring and computer processing of, for example, electroence- 
phalographic, electrocardiographic, and other cardiovascular-pul- 
monary drug-effected changes (27-31). In this manner, drug 
inputs can be continually observed to maintain biophasic drug 
levels which are constantly consistent with maintaining a maximal 
therapeutic efficiency of a drug’s responses. The feasibility of a 
similar approach to the operation of an electroencephalographically 
innervated, automated, anesthetic administration apparatus has 
already been described (32,33). 
In principle, elucidation of the dynamics of a pharmacologically 

responding system’s dynamic behavior will permit the computation 
of time-optimal drug inputs as well as the interrelation and compu- 
tation of the time variation of any drug effect or plasma drug level 
from the results of monitoring any other. The fidelity of these 
theoretical relationships and their potential clinical usefulness are 
the subject of present research efforts by the authors. 

APPENDIX : DERIVATION OF TIME-OPTIMAL INPUT 

A version of the derivation of the solution using the approach 
presented by Kreindler (1 8) is presented here. 

Integral Representation of Linear System-Equation 13a, the 
linear system to be controlled, will be referred to as the plant. The 
solution to Eq. 13a can be expressed in the well-known form (21): 

f t ,7PN7)lfr(7)  dr (Eq. A l l  

( f , T )  is the state transition 

z(t) = i(t,a)z(O) + 

where z(r) is thc stntc vcctor and where 
matrix. Equation A1 can be written as: I 

z(I)  = zo(t) + h(r,T)ff’(7) d7 (Eq. A21 

where zo(r) expresses the effect on z(t) of the initial conditions and 
h(t,7) can be interpreted as the response z(t) to an impulse u(t)  = 
S ( t  - 7) applied at t = 7.  The functions / r i ( f , T ) ,  i = I .  2,. . ., ir ,  

will be considered arbitrary, except for the following conditions : 
1. hi( t ,7 )  is bound on finite intervals of t and T ,  continuous in 

t ,  and piecewise continuous in r [for plants described by an equa- 
tion, i.e., 13a, with constant coefficients, / r , ( t )  is continuous]. If 
/r ( t ,T)  is the impulse response, then h,( t ,7)  = 0 for t 5 T and may be 
discontinuous at t = 7. This condition implies that the control 11 

and discontinuities (if any) of the plant’s parameters affect the output 
z(t) only through dynamic elements. 

2. The functions / r i ( t , T )  are linearly independent on all intervals 
of 0 5 7 5 t .  That is, for every nonzero n-vector A, the inner 
product: 

Lt 

> I  

X . h ( t , T ) =  X,h i ( f ,T )$O on 0 5 7 5 t (Eq. A3) 

This condition is equivalent (21) to the statement that the plant can 

2 = 1  
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be brought, by a suitable control u, from any initial condition at t = 
0 to any output z(Tf) at t = TI (both finite) on an arbitrary finite 
interval of time 0 5 t 5 T,. This property of the plant will be called 
total controllability. 

It is important to observe that condition A3 allows I .A(t ,r)  = 
0 on proper subintervals of 0 5 7 5 t provided that, for each t ,  
there is someffinite interval t l  5 r 5 t,, where I.h#O. Ifh.h(t,T) 
can vanish only on a set of isolated points, the plant is called normal 
(21). 

Constraints on u’-Usually, u’ is constrained in some manner. 
The most common constraints are the amplitude constraint lu’(t)l 5 
C, the “area” constraintfp(u’(t)/ dt 5 Cl, and the energy constraint 

STIu‘(t)l2 dt 5 C2. These constraints may be unified by: 

( ~ * ’ ~ u ’ ( t ) ~ ~ d t ) l ’ * _ <  C, 1 _< p 5 (Eq. A4) 

For p = m and piecewise continuous 10, Eq. A4 reduces to  the am- 
plitude constraint: 

0 5“;; T/lu’(t)l 5 c (Eq. A5u) 
A control u‘ satisfying Eq. A4 will be called admissible; the collec- 
tion of all admissible controls is called the admissible set. 

If the wider class of all meusurubfe controls satisfying condition 
A4 are considered, the integration is then in the Lebesque sense 
(22). Then, for a given p,  each control becomes a member of the 
function and the admissible set is the closed C, - sphere in L,. In the 
example considered here, only the amplitude constraint, condition 
A5, is used, but the future application of the area constraint would 
correspond to a limit on the cumulative drug in the system. 

The Control Problem-As stated previously, the objective is to 
cause z(t )  t o  coincide with Eq. 13h and thereby cause Eq. 13e to be 
satisfied, in the minimum time, using an  admissible control. Forming 
the difference: zd(r) = Z d ( f )  - zo(t), and referring back to Eq. A2, 
the problem may be formulated as follows: 

Given zd(t) ,  find an admissible control u’ so that: 

l‘h(t ,r)u’(T) dr = zqt)  (Eq. A5b) 

a t  the minimal time, t = T / .  
The Reachable Region-The output z(t )  can be viewed as a 

continuously moving point in an  17-dimensional Cartesian space 
2, the output space. Consider the plant, A2, a t  rest at  t = 0 [zo(t) = 
01. The set of the points z (Tf )  in 2, reached by using all u in an  
admissible set, will be called the reachable region and denoted by 
R(0,Tf);  R depends onp and C,. 

The general properties of R(0,Tf) can be expressed by the fol- 
lowing theorem. 

Theorem I-The reachable region, R(O,T,), is a closed, bound, 
and convex bodys, symmetrical with respect to (and centered on) 
the origin z = 0 and continuous in TI .  (The proofs of the theorems 
to  be presented can be found in Rejbrence 18.) 

The control process can now be risualized (for 11 5 3 )  as follows. 
In the output space, there are the continuously changing region 
R(O,T/) and the continuously moving “target” point zd(t).  By defini- 
tion, zd( t )  can be reached if and only if, for some finite time Tf, 
zd(T,) is in R(0,Tj). Because of the continuity of R(O,Tf), it is clear 
that the first contact of zd(t) with R(0,t) must be at  the boundary of 
R(O,t), determining the minimal time t = Tyo. This leads to the 
following theorem. 

Theorem 2-If for some terminal time T f  = Tj,, zd(Tf l )  is in R(0, 
T fL) ,  then the optimal time T/”,Tf 5 Tl1, exists; Tfo is such that 
zd(Tfo)  is in the boundary of R(O,T/O), and, for T/ < Tj0, zd(Tj )  is 
not in R(O,T/). 

The validity of Theorem 2 is the main reason for Conditions 1 
and 2 imposed on h { ( f , T ) .  Unless Condition 1 holds, R(0,t) and/or 
zo(t) and zd( t )  may be discontinuous and the first contact of zd ( t )  
may be at  the interior of R(0,r). The same may happen if R(O,T,) 
degenerates t o  be confined in a linear subspace? of 2, because 
Eq. A3 of Condition 2 fails for T = 0 and some t = Tj.. 

a. z y t )  
T, 

31. h(f,r)u’O(T;A,t,Cp) dr s, 

fi Closed means a region that includes its boundary, and convex 
means a region with no holes, i.e., all points within the region boundary 
belong to the region. 

7 For n = 3, a linear subspace could be either a plane or a line. For 
n = 2, a linear subspace could be a line. 

= 1 (Eq.A7) 

f = T /  

According to  Theorem 2, it is necessary to seek the controls that 
lead to  boundary points in R(0,Tf); such a control will be called 
an optimal control do. 

Necessary and Sufficient Conditions for an Optimal Control- 
Theorem 3-An admissible control can be optimal only if it satis- 
fies Eq. A4 with an equality sign. 

This result by itseIf’does not imply a bang-bang control for the 
amplitude constraint; it merely implies, according to Eq. A5, that 
lu’(t)l = C, for a t  least one point on the interval 0 5 t 5 T,. 

Since R is convex, each point in the boundary of R can be con- 
tained in a supporting hyperplanes to R,  S(31). The points in the 
intersection of the supporting plane and the boundary of R are 
the farthest points in R in the direction of a. An illustration of a 
hyperplane S(5)  supporting an  R(0,Tf) a t  zd (T / )  is shown in Scheme 
VIII for a space of dimension 2. 

Scheme VIII-Reachable region with the supporting hyperplane 

* A hyperplane, 31.2 = C, where C 2 0 and 31 is a nonzero fixed- 
length vector in 2, is the generalization to n-space of a plane in 3-space; 
it is an (n  - 1)-dimensional subspace. 

1950 Journal of Pharmaceutical Sciences 



(23) for integrals. It is: 

Ix(r)u(r)/df I [ lb Ix( t ) lp dt]“’”’ [ ib iu(t)lq dt]‘”’) 

(Eq. A8) 
lb 
where 1 5 p 5 m and (l/p) + (l/q) = 1, and which, for I < p 
< m is satisfied with an equality if and only if lx(t)/p = Kl ly(r)lq, 
where Kl is a positive real constant. 

By the definition ofa  hyperplane, h . z ( T / )  > 0 and, therefore: 

( 1 l d  

3 . i . Q ~ )  5 [ 1% /I. h(T/,r)j“ dr X 1 

Proceeding, one has : 

(s,” KplX. h(Tf,7)IqI sgn [A. h(T/,r)llP d~ 
(1111) 

= C, (Eq. A18) ) 
or, moving KP out of the integral and rearranging, one obtains: 

By using Holder’s inequality, A8, on the right-hand side of Eq. 
A9, one obtains: 

h.z(Tf) 5 [ l” (1. h(T~,7)lQ d7 
( l / d  1 .  

1 [ lT’ Iu‘(7)Ip d ~ ] “ ’ ” ’  ’ P  4- Y - = 1 (Eq. A10, 

By Theorem 3, a necessary condition for the maximum of a.z(TJ) 
is that: [so*’ l u ’ ( ~ ) l ~ d r ] ( ~ ’ ~ )  = C, (Eq. A l l )  

By substituting Eq. A1 1 into Eq. A10, one obtains: 

( l i p )  [ s,” /l.h(Tj,r)Iq d7 C, (Eq. A12) 

Obviously, the maximum of h.z(T/) is obtained if and only if Eq. 
A12 satisfies the equality sign. Now, the inequality in Eq. A9 is 
satisfied with an equality if and only if: 

1 h.Z(T/) I 

sgn ~ ’ ( 7 )  = sgn [h.h(Tf,7)] (Eq. A13)9 

Also, Eq. A10 is satisfied with an equality if and only if, for 
l < p <  m :  

l U ‘ ( 7 ) I  = Kll’p/h’h(T~,+)l‘q’p) (Eq. A14a) 

or : 

lu’(r)l = KIh.h(T,,~)/(q/p) K > 0 (Eq. A14b) 

Considering the definition of the signum function, one can write 
~ ’ ( 7 )  as: 

u‘(r) = /u’(7)1 sgn I U ’ ( T ) /  (Eq. A15) 

To have condition A10 be satisfied with the equality, one must 
apply Eq. A14b to Eq. A15. One obtains: 

u’(r) = K(L.h(Tf,7)1(R/P) sgn lu’(r)l (Eq. A16) 

Also, to have condition A9 be satisfied with the equality, one 
must apply Eq. A13 to Eq. A16. This yields: 

u’(r) = K/A.h(Ty,r)/(q’p) sgn [X*h(T/,r)] 1 < p < m (Eq. A17) 

Now u‘ (7)  must also satisfy Eq. A l l ,  This can be done by ad- 
justing K; i.e., substituting Eq. A17 into Eq. A1 1 yields K so that 
Eq. A1 1 is satisfied. 

@ sgn is the signum function described by sgn x = 
- ’ < 

i + I x > O  

K =  Tr (Eq. A19) 
(ih.h(T,,r)Iq/sgn[h.h(T/,r)]lpd?)(1/p) 

Recalling the definition of the signum function, one can write: 

/sgn [h.h(T/,7)]1~ = I ( f l @  = 1 (Eq. A20) 

wherep is some integer value, 1 5 p _< m. 

Also since ( I / p )  + (1 /q)  = 1, one can write: 

(Eq. A21) 

and : 

Ly- ]  (Eq. A22) P 

Substituting Eqs. A20 and A21 into Eq. A19, one obtains: 

Therefore, substituting Eqs. A23 and A22 into Eq. A17 results in 

Theorem 6-An admissible control is optimal if and only if: 
the following theorem. 

Forp = m , q  = 1 (theamplitudeconstraint), Eq. A24 becomes: 

~ ’ ~ ( 2 )  = C sgn h.h(Tf.t) (Eq. A25) 

which is necessary aridsufficient for equalities in Eqs. A9 and A10. 
With u’O(t) given by Eq. A24, Eq. A7 becomes: 

(l” /h.h(Tf,r)/q d7 (q- - l /q)  

(Eq. A26) 

Once again, by recalling the definition of the signum function, 

) 
Eq. A26 becomes: 

The length of h is arbitrary (only the direction of a being sig- 
nificant): therefore, it can be adjusted so that x . z d ( t )  = 1.0. Equa- 
tion A27 becomes: 

min (l‘ /h.h(t ,~)Iq d7 (-lid 1 1 I=T/ t=TJ 

(Eq. A28) 

= 1 

for the amplitude constraint, and a system described by an equa- 
tion (i.e., A9) with constraint coefficients,p = a and q = l, Eq. A28 
can be arranged to yield: 

) = C,, ; i .zd(t)  1 
I 
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Tr 
1 = min 1 C&*h(t - 7 ) l d ~  (Eq. A29) 

1 

a.zyTJ) = I 

For this particular system, as described by Eq. A9, one has: 

(Eq. A31c) 
$n(t - 7 )  

02dt - 7) 

$12(f - 7 )  

&(t - 7 )  
- 7 )  = ( 

@ ( t )  was defined in Eq. Al .  
From Eq. A31a, one obtains: 

(Eq. A32) 

Also: 

(Eq. A33) MD c, = -2 

Substituting Eqs. A316, A32, and A33 into Eq. A29, one obtains: 

7) dr (Eq. A34) 

and the control Eq. A25 becomes: 

where XI is found by the minimization of Eq. A34. 
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